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P1. Throughout this problem we denote λ as the Lebesgue measure on R.

(a) Let A be a Lebesgue-measurable set on the real line such that λ(A) > 0. Show that the
difference set A−A = {x− y | x, y ∈ A} contains an open neighborhood of 0 in R.
Hint: Prove that for each r ∈ (1/2, 1), there is an interval (a, b) ⊆ R such that λ(A ∩
(a, b))/(b− a) ≥ r.

Solution: By regularity, there is an open set U ⊇ A such that µ(U) ≤ µ(A) + ϵ. As U is
countable union of disjoint open intervals, we can write U =

⊔
i(ai, bi), and thus∑

i

µ((ai, bi)) = µ(U) ≤
∑
i

µ(A ∩ (ai, bi)) + ϵ.

If the statement in the hint is false, then µ(A ∩ (ai, bi) < rµ((ai, bi)) and thus∑
i

µ((ai, bi)) = µ(U) ≤
∑
i

rµ((ai, bi)) + ϵ, ⇐⇒ µ(U)(1− r) ≤ ϵ.

So taking ϵ = µ(A)(1− r)/2 we arrive to a contradiction, given that

µ(A) ≤ µ(U) ≤ ϵ/(1− r) = µ(A)/2 =⇒ µ(A) = 0.

In particular, there is an interval (a, b) such that r ≤ µ((a, b) ∩ A)/µ((a, b)). Call I =
(a, b) ∩A.
Let δ ∈ (0, b−a). We assume by contradiction that (−δ, δ)∩ (A−A)c ̸= ∅. In other words,
there is x ∈ (−δ, δ) such that (x+A)∩A = ∅. In particular (x+((a, b)∩A))∩((a, b)∩A) = ∅.
This implies that

µ((I + x) ∪ I) = 2µ(I). (1)

On the other hand

µ((I + x) ∪ I) ≤ µ((a, b) + x ∪ (a, b)) < b− a+ δ.

Thus
b− a+ δ ≥ 2µ(I) ≥ 2(b− a)r

or equivalently δ > (b− a)(2r− 1). Taking δ small enough (less than (b− a)(2r− 1)), this
leads to a contradiction.

(b) Let (H,+) be a Lebegue measurable proper subgroup of (R,+). Show that λ(H) =
0.

Solution: If by contradiction λ(H) > 0 then by the previous part, there is δ > 0 such
that (−δ, δ) ⊆ H − H = H. However, the previous inclusion implies H = R which is a
contradiction.

P2. (a) Show that the Dirac functional δ0 ∈ M[0, 1] defined by δ0(f) := f(0) is not of the form

δ0(f) =

∫ 1

0
f(t)g(t)dt (f ∈ C[0, 1])

for any g ∈ C[0, 1].



Solution: If we assume by contradiction that there is g ∈ C([0, 1]) such that for all
f ∈ C([0, 1]) f(0) =

∫ 1
0 f(t)g(t)dt, then for each ϵ > 0, take δ > 0 and for each f ∈ C([ϵ, 1]),

extent f continuously to a function f ′ such that for x ∈ [0, 1](ϵ− δ, ϵ):

f ′(x) =

{
0 if x ∈ [0, ϵ− δ]

f(x) if x ∈ [ϵ, 1]

and f ′ is a line that connects 0 and f(ϵ) in [ϵ− δ, ϵ]. Then, we will have

0 = f ′(0) =

∫ 1

0
f ′(t)g(t)dt =

∫ ϵ

ϵ−δ
f ′(t)g(t)dt+

∫ 1

ϵ
f(t)g(t)dt. (2)

Noticing that

|
∫ ϵ

ϵ−δ
f ′(t)g(t)dt| ≤ |f(ϵ)| · ||g||∞δ,

and making δ → 0 in equation (2) we get

0 =

∫ 1

ϵ
f(t)g(t)dt.

Given that f ∈ C([ϵ, 1]) was arbitrary, we get g(t) = 0 for all t ≥ ϵ. As ϵ > 0 was arbitrary
and g is continuous, this implies g = 0, which is a contradiction with the hypothesis (by
taking f1 for example).

(b) Define ψ : C[0, 1] → R by

ψ(f) =
f(0) + f(1)

2
+

∫ 1

0
tf(t)dt.

Determine the measure from the Riesz-Markov-Kakutani theorem corresponding to ψ, i.e.
a regular Borel measure µ on [0, 1] such that ψ(f) =

∫
[0,1] f dµ for f ∈ C[0, 1]. Calculate

µ([0, 1]).

Solution: By Riesz representation theorem, there is a Radon measure ν such that∫ 1
0 tf(t)dt =

∫
fν (actually this equation defines the measure ν).

We will have that ψ(f) =
∫
fd( δ0+δ1

2 + ν). Call µ = ( δ0+δ1
2 + ν). Let us see that µ is a

Radon measure on [0, 1]. First of all, as µ is clearly positive, if we compute the measure
of [0, 1] then we will prove that is finite in compact sets (by being finite). Notice that

µ([0, 1]) =
∫
[0,1] 1dµ = 1+1

2 +
∫ 1
0 t · 1dt = 1 + ( t

2

2 ) |
1
0=

3
2 .

For the outer regularity, if E ⊆ [0, 1] then we have 3 cases: If E ⊆ (0, 1) then µ(E) = ν(E),
in which the outer regularity follows from the regularity of ν. If for example 0 ∈ E and
1 /∈ E then

inf{µ(U) : U is open and E ⊆ U} =
1

2
+ inf{ν(U) : U is open and E ⊆ U}

=
δ0(E) + δ1(E)

2
+ ν(E)

= µ(E),

which gives the regularity in this case, where we used that the infimum is reach with open
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sets excluding 1, i.e. contained in [0, 1) given that E is contained in this set. A similar
strategy gives the inner regularity, which concludes that µ is a Radon measure.

P3. In this exercise, we will construct a Haar measure1 on the n-torus Tn = Rn/Zn. For this, recall
that one can identify functions f : Tn → C with Zn-invariant functions F : Rn → C on Rn (i.e.
we require F (x+m) = F (x) for all m ∈ Zn ). Furthermore, f is continuous (measurable) if and
only if F is continuous (measurable). We define a measure m on Tn by requiring that∫

Tn

f dm =

∫
[0,1]n

F dmRn

where mRn is the Lebesgue measure on Rn and f, F are measurable and correspond to each other.
Justify that m is well define and show that m is a Haar measure on Tn.

Define Φ : C(Tr) → C(Rr) as Φ(f) = F where F is constructed as in the statement of
the question (i.e. F (x) = f(x mod 1)). This operation is well defined given that for each
f ∈ C(Tr) results in a continuous function Φ(f) (because is isometric, doting Tr of the distance
d(x, y) = ||x−y||Tr where ||x||Tr is the minimum distance from x to Zr). Therefore, the operator
ψ : C(Tr) → C defined by

ψ(f) =

∫
[0,1]r

Φ(f)dmRr .

This functional is clearly linear and positive (given that Φ is). Thus, m is well defined. Now,
for proving that is a Haar measure on Tn, what is left to prove is that is left-invariant. Let
t ∈ Tr and define ft(x) = f(x+ t). We want to show that∫

Tr

ftdm =

∫
Tr

fdm. (3)

Without loss of generality, assume that t = (0, . . . , 0, ti, 0, . . . , 0) (if we prove the invariance for

1A Haar measure is a Radon measure on a locally compact topological group (G,+) that is left-invariant, meaning
that for any Borel set S and g ∈ G, µ(g + S) = µ(S).

3



each coordinate, the global invariance will follow). Then∫
Tr

ftdm =

∫
[0,1]n

Φ(ft)dmRn

=

∫
[0,1]n

f(x+ t mod 1)dmRn(x)

=

∫
[0,1]i−1×[ti,1+ti]×[0,1]n−i

ftdmRn

=

∫
[0,1]i−1×[ti,1+ti]×[0,1]n−i

ftdmRn

=

∫
[0,1]i−1×[ti,1]×[0,1]n−i

ftdmRn +

∫
[0,1]i−1×[1,1+ti]×[0,1]n−i

ftdmRn

=

∫
[0,1]i−1×[ti,1]×[0,1]n−i

ftdmRn +

∫
[0,1]i−1×[0,ti]×[0,1]n−i

ft(x+ (0, ..., 0, 1, 0, ..., 0) mod 1)dmRn(x)

=

∫
[0,1]i−1×[ti,1]×[0,1]n−i

ftdmRn +

∫
[0,1]i−1×[0,ti]×[0,1]n−i

ft(x) mod 1)dmRn(x)

=

∫
[0,1]n

ftdmRn

=

∫
Tr

fdm

concluding that m is invariant.
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