Exercise Sheet Solutions #7

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

- **P1.** Throughout this problem we denote λ as the Lebesgue measure on \mathbb{R} .
 - (a) Let A be a Lebesgue-measurable set on the real line such that $\lambda(A) > 0$. Show that the difference set $A A = \{x y \mid x, y \in A\}$ contains an open neighborhood of 0 in \mathbb{R} . **Hint:** Prove that for each $r \in (1/2, 1)$, there is an interval $(a, b) \subseteq \mathbb{R}$ such that $\lambda(A \cap A) \subseteq \mathbb{R}$ such that $\lambda(A$

Hint: Prove that for each $r \in (1/2,1)$, there is an interval $(a,b) \subseteq \mathbb{R}$ such that $\lambda(A \cap (a,b))/(b-a) \ge r$.

Solution: By regularity, there is an open set $U \supseteq A$ such that $\mu(U) \le \mu(A) + \epsilon$. As U is countable union of disjoint open intervals, we can write $U = \bigsqcup_i (a_i, b_i)$, and thus

$$\sum_{i} \mu((a_i, b_i)) = \mu(U) \le \sum_{i} \mu(A \cap (a_i, b_i)) + \epsilon.$$

If the statement in the hint is false, then $\mu(A \cap (a_i, b_i) < r\mu((a_i, b_i))$ and thus

$$\sum_{i} \mu((a_i, b_i)) = \mu(U) \le \sum_{i} r\mu((a_i, b_i)) + \epsilon, \iff \mu(U)(1 - r) \le \epsilon.$$

So taking $\epsilon = \mu(A)(1-r)/2$ we arrive to a contradiction, given that

$$\mu(A) \le \mu(U) \le \epsilon/(1-r) = \mu(A)/2 \Longrightarrow \mu(A) = 0.$$

In particular, there is an interval (a,b) such that $r \leq \mu((a,b) \cap A)/\mu((a,b))$. Call $I = (a,b) \cap A$.

Let $\delta \in (0, b-a)$. We assume by contradiction that $(-\delta, \delta) \cap (A-A)^c \neq \emptyset$. In other words, there is $x \in (-\delta, \delta)$ such that $(x+A) \cap A = \emptyset$. In particular $(x+((a,b)\cap A)) \cap ((a,b)\cap A) = \emptyset$. This implies that

$$\mu((I+x)\cup I) = 2\mu(I). \tag{1}$$

On the other hand

$$\mu((I+x) \cup I) \le \mu((a,b) + x \cup (a,b)) < b-a+\delta.$$

Thus

$$b - a + \delta \ge 2\mu(I) \ge 2(b - a)r$$

or equivalently $\delta > (b-a)(2r-1)$. Taking δ small enough (less than (b-a)(2r-1)), this leads to a contradiction.

(b) Let (H, +) be a Lebegue measurable proper subgroup of $(\mathbb{R}, +)$. Show that $\lambda(H) = 0$.

Solution: If by contradiction $\lambda(H) > 0$ then by the previous part, there is $\delta > 0$ such that $(-\delta, \delta) \subseteq H - H = H$. However, the previous inclusion implies $H = \mathbb{R}$ which is a contradiction.

P2. (a) Show that the Dirac functional $\delta_0 \in \mathcal{M}[0,1]$ defined by $\delta_0(f) := f(0)$ is not of the form

$$\delta_0(f) = \int_0^1 f(t)g(t)dt \quad (f \in C[0,1])$$

for any $g \in C[0,1]$.

Solution: If we assume by contradiction that there is $g \in C([0,1])$ such that for all $f \in C([0,1])$ $f(0) = \int_0^1 f(t)g(t)dt$, then for each $\epsilon > 0$, take $\delta > 0$ and for each $f \in C([\epsilon,1])$, extent f continuously to a function f' such that for $x \in [0,1](\epsilon - \delta, \epsilon)$:

$$f'(x) = \begin{cases} 0 & \text{if } x \in [0, \epsilon - \delta] \\ f(x) & \text{if } x \in [\epsilon, 1] \end{cases}$$

and f' is a line that connects 0 and $f(\epsilon)$ in $[\epsilon - \delta, \epsilon]$. Then, we will have

$$0 = f'(0) = \int_0^1 f'(t)g(t)dt = \int_{\epsilon - \delta}^{\epsilon} f'(t)g(t)dt + \int_{\epsilon}^1 f(t)g(t)dt.$$
 (2)

Noticing that

$$\left| \int_{\epsilon-\delta}^{\epsilon} f'(t)g(t)dt \right| \le |f(\epsilon)| \cdot ||g||_{\infty} \delta,$$

and making $\delta \to 0$ in equation (2) we get

$$0 = \int_{\epsilon}^{1} f(t)g(t)dt.$$

Given that $f \in C([\epsilon, 1])$ was arbitrary, we get g(t) = 0 for all $t \ge \epsilon$. As $\epsilon > 0$ was arbitrary and g is continuous, this implies g = 0, which is a contradiction with the hypothesis (by taking f1 for example).

(b) Define $\psi: C[0,1] \to \mathbb{R}$ by

$$\psi(f) = \frac{f(0) + f(1)}{2} + \int_0^1 t f(t) dt.$$

Determine the measure from the Riesz-Markov-Kakutani theorem corresponding to ψ , i.e. a regular Borel measure μ on [0,1] such that $\psi(f) = \int_{[0,1]} f \, d\mu$ for $f \in C[0,1]$. Calculate $\mu([0,1])$.

Solution: By Riesz representation theorem, there is a Radon measure ν such that $\int_0^1 t f(t) dt = \int f \nu$ (actually this equation defines the measure ν).

We will have that $\psi(f) = \int f d(\frac{\delta_0 + \delta_1}{2} + \nu)$. Call $\mu = (\frac{\delta_0 + \delta_1}{2} + \nu)$. Let us see that μ is a Radon measure on [0,1]. First of all, as μ is clearly positive, if we compute the measure of [0,1] then we will prove that is finite in compact sets (by being finite). Notice that $\mu([0,1]) = \int_{[0,1]} 1 d\mu = \frac{1+1}{2} + \int_0^1 t \cdot 1 dt = 1 + (\frac{t^2}{2}) \mid_0^1 = \frac{3}{2}$.

For the outer regularity, if $E \subseteq [0,1]$ then we have 3 cases: If $E \subseteq (0,1)$ then $\mu(E) = \nu(E)$, in which the outer regularity follows from the regularity of ν . If for example $0 \in E$ and $1 \notin E$ then

$$\inf\{\mu(U): U \text{ is open and } E\subseteq U\} = \frac{1}{2} + \inf\{\nu(U): U \text{ is open and } E\subseteq U\}$$

$$= \frac{\delta_0(E) + \delta_1(E)}{2} + \nu(E)$$

$$= \mu(E),$$

which gives the regularity in this case, where we used that the infimum is reach with open

sets excluding 1, i.e. contained in [0,1) given that E is contained in this set. A similar strategy gives the inner regularity, which concludes that μ is a Radon measure.

P3. In this exercise, we will construct a Haar measure¹ on the *n*-torus $\mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$. For this, recall that one can identify functions $f: \mathbb{T}^n \to \mathbb{C}$ with \mathbb{Z}^n -invariant functions $F: \mathbb{R}^n \to \mathbb{C}$ on \mathbb{R}^n (i.e. we require F(x+m) = F(x) for all $m \in \mathbb{Z}^n$). Furthermore, f is continuous (measurable) if and only if F is continuous (measurable). We define a measure m on \mathbb{T}^n by requiring that

$$\int_{\mathbb{T}^n} f \, \mathrm{d}m = \int_{[0,1]^n} F \, \mathrm{d}m_{\mathbb{R}^n}$$

where $m_{\mathbb{R}^n}$ is the Lebesgue measure on \mathbb{R}^n and f, F are measurable and correspond to each other. Justify that m is well define and show that m is a Haar measure on \mathbb{T}^n .

Define $\Phi: C(\mathbb{T}^r) \to C(\mathbb{R}^r)$ as $\Phi(f) = F$ where F is constructed as in the statement of the question (i.e. $F(x) = f(x \mod 1)$). This operation is well defined given that for each $f \in C(\mathbb{T}^r)$ results in a continuous function $\Phi(f)$ (because is isometric, doting \mathbb{T}^r of the distance $d(x,y) = ||x-y||_{\mathbb{T}^r}$ where $||x||_{\mathbb{T}^r}$ is the minimum distance from x to \mathbb{Z}^r). Therefore, the operator $\psi: C(\mathbb{T}^r) \to \mathbb{C}$ defined by

$$\psi(f) = \int_{[0,1]^r} \Phi(f) dm_{\mathbb{R}^r}.$$

This functional is clearly linear and positive (given that Φ is). Thus, m is well defined. Now, for proving that is a Haar measure on \mathbb{T}^n , what is left to prove is that is left-invariant. Let $t \in \mathbb{T}^r$ and define $f_t(x) = f(x+t)$. We want to show that

$$\int_{\mathbb{T}^r} f_t dm = \int_{\mathbb{T}^r} f dm. \tag{3}$$

Without loss of generality, assume that $t = (0, \dots, 0, t_i, 0, \dots, 0)$ (if we prove the invariance for

¹A Haar measure is a Radon measure on a locally compact topological group (G, +) that is left-invariant, meaning that for any Borel set S and $g \in G$, $\mu(g + S) = \mu(S)$.

each coordinate, the global invariance will follow). Then

$$\begin{split} \int_{\mathbb{T}^r} f_t dm &= \int_{[0,1]^n} \Phi(f_t) dm_{\mathbb{R}^n} \\ &= \int_{[0,1]^{i-1} \times [t_i,1+t_i] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} \\ &= \int_{[0,1]^{i-1} \times [t_i,1+t_i] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} \\ &= \int_{[0,1]^{i-1} \times [t_i,1+t_i] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} \\ &= \int_{[0,1]^{i-1} \times [t_i,1] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} + \int_{[0,1]^{i-1} \times [1,1+t_i] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} \\ &= \int_{[0,1]^{i-1} \times [t_i,1] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} + \int_{[0,1]^{i-1} \times [0,t_i] \times [0,1]^{n-i}} f_t (x + (0,\dots,0,1,0,\dots,0) \bmod 1) dm_{\mathbb{R}^n}(x) \\ &= \int_{[0,1]^{i-1} \times [t_i,1] \times [0,1]^{n-i}} f_t dm_{\mathbb{R}^n} + \int_{[0,1]^{i-1} \times [0,t_i] \times [0,1]^{n-i}} f_t (x) \bmod 1) dm_{\mathbb{R}^n}(x) \\ &= \int_{[0,1]^n} f_t dm_{\mathbb{R}^n} \\ &= \int_{\mathbb{T}^r} f dm \end{split}$$

concluding that m is invariant.